Search results for "ependymal cells"

showing 3 items of 3 documents

Axons take a dive

2014

In the walls of the lateral ventricles of the adult mammalian brain, neural stem cells (NSCs) and ependymal (E1) cells share the apical surface of the ventricular-subventricular zone (V-SVZ). In a recent article, we show that supraependymal serotonergic (5HT) axons originating from the raphe nuclei in mice form an extensive plexus on the walls of the lateral ventricles where they contact E1 cells and NSCs. Here we further characterize the contacts between 5HT supraependymal axons and E1 cells in mice, and show that suprependymal axons tightly associated to E1 cells are also present in the walls of the human lateral ventricles. These observations raise interesting questions about the functio…

Ependymal Cell1.1 Normal biological development and functioningBiologySerotonergicArticleLateral ventriclesDevelopmental NeuroscienceUnderpinning research2.1 Biological and endogenous factorshumanAetiologyneural stem cellsPlexusNeurogenesisNeurosciencesependymal cellsAnatomyStem Cell ResearchNeural stem cellserotoninsupraependymal axonsadult neurogenesisnervous systemNeurologicalSerotoninRaphe nucleiNeuroscienceDevelopmental BiologyNeurogenesis
researchProduct

Age-Related Changes in Astrocytic and Ependymal Cells of the Subventricular Zone

2014

Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as ot…

nervous systemagingastrocytesependymal cellssubventricular zoneultrastructureneural stem cells
researchProduct

The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation

2014

Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain geneLhx2is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function ofLhx2in tanycyte development, we used an intersectional gene…

MaleCell typeEpendymal CellCellular differentiationNeurogenesisEpendymoglial CellsLIM-Homeodomain Proteinsradial gliaHypothalamusMice TransgenicBiologytanycytesMicemedicineAnimalshypothalamustranscription factorGeneticsTanycyteGeneral NeuroscienceNeurogenesisependymal cellsCell DifferentiationArticlesNeural stem cellCell biologyNeuroepithelial cellmedicine.anatomical_structureembryonic structuresEctopic expressionFemalemetabolismTranscription Factors
researchProduct